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In 2018, there have already been 61 hours above freezing at
Cape Morris Jesup, Greenland.

The previous record was 16 hours before the end of April in
2011.
8:02 PM - Feb 25, 2018

) 157 Q 180 people are talking about this

Source:https://www.theweathernetwork.com/




Sequence Images of Polynya Opening North of Greenland
Feb 11, 2018 to March 12, 2018
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Transformation form
multi-year to first-year
sea ice.

Arctic sea ice cover continues
to decline.

Source: NSIDC

Ice Age Distribution During Week Nine in 1984 and 2018
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Where and when do CMIP5 model differ on Arctic warming
projections? Annual Mean Winter (JF)  Sunlit (MAMJJAS) Autumn (OND)
a.) :8 b.) 3 | c.) 8 d.) :8

Largest
differences
between CMIP5
models occur in
fall and winter in
the Barents-Kara
Seas and the
Chukchi-Beaufort

Seas regions.
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Method: Surface energy budget decomposition

" ANNUAL
Lu and Cai (2009) FEEDBACK PTC (K) . A,t,’ (K)
Surface energy budget Eq.: Surface Albedo ~(Aa)S]+AS ) 182 %077
O=1—-a)Slsw down + Fliw down Feedback (SAF) 40T’ R
—colisT4d —(S+1) _
Cloud Forcing (CRE) ( a)ASiCL;—:AF V) 0.69 £ 0.88
o
Rewriting using clear-sky s
- -SAF sh (1= )AS |1
fluxes and clouq radiative :;Z,_sky;ezg;i‘,’; o1 -0.43 £ 0.20
effects and solving for aTs Longwave clear-sky AF oy 7 e a
feedbacks (LWCS) 4‘7Ts3 ’ -
A7s= (the sum of) , ) %
Change in ocean heat —aL
storage (HSTOR) 40T’ -0.30x1.2
Change in latent and _A(S+L)
sensible heat fluxes . -1.67 £ 0.86
(HFLUX) *

LW clear-sky feedbacks dominate the Arctic warming signal.




Contributionsmto surface te
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hange--Strong seasonality

Clouds cool
surface in
summer and
warm in fall/
winter.

HFLUX show
no change in
summer and
cool surface in
fall/winter.

The seasonality of these contributions is amazingly consistent across models.




How are the model difterences spatially distributed?
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Regions that warm most have the largest feedback
contributions...most of the time
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A complete picture ot Arctic Amplification?

Local Mechanism

LWDN is the
dominant term
contributed to
Arctic
Amplification.

armer, moister,
cloudier Arctic
Qtmosphere

APHT=> Atmos. Poleward heat transport
LWDN=> Downward LW radiation
SAF=> Surface Albedo Feedback
HSTOR=> Ocean heat storage/transport
HFLUX=>surface turbulent fluxes

Non-polar
circulations
changes
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Local mechanism sets the spatial structure of Arctic amplification.

HFLUX ‘
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A larger annual cycle ocean heat storage amplitude
increase=>larger projected warming
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A strong positive correlation is found
between the changes in the seasonal
amplitude of ocean heat storage and
projected Arctic Amplification.

Thus, processes controlling the
seasonality of ocean heat storage
(upper ocean mixing, absorbed solar
radiation, surface turbulent fluxes) may
hold the key to unraveling inter-model
differences in Arctic Amplification.

Summer=>ability to store energy (mixed layer depth, ASR)

Fall/winter=>ability to release energy (surface turbulent fluxes)




Models increase both SAF and fall/winter HFLUX
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A picture of AA and the inter-model spread

LWCS sets the Arctic-wide magnitude of warming, and explains way all models
produce AA. Both models and spatial regions with the largest LWCS increases,

warm more.

We hypothesize that the
treatment of atmosphere-
ocean-sea ice processes in the
B-K Seas region is responsible

for the significant inter-model
differences in AA.
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We hypothesize
that the
connection
between the B-K
Seas region and
the rest of the
Arctic (via LWCS)
is controlled by
the atmospheric
circulation
response.
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Takeaway messages:




Increased B-K Sea region surface turbulent fluxes
have an Arctic-wide impact

Surface turbulent flux
changes in the Barents-
Kara Seas region show an
Arctic-wide impact on
LWCS, magnitude of
which is strongest locally.
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